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Abstract. We develop and discuss in technical detail an infrared-finite factorization and optimized renor-
malization scheme for calculating exclusive processes, which enables the inclusion of transverse degrees
of freedom without entailing suppression of calculated observables, like form factors. This is achieved by
employing an analytic, i.e., infrared stable, running strong-coupling αs(Q2) which removes the Landau
singularity at Q2 = Λ2QCD by a minimum power-behaved correction. The ensuing contributions to the cusp
anomalous dimension – related to the Sudakov form factor – and to the quark anomalous dimension –
which controls evolution – lead to an enhancement at high Q2 of the hard part of exclusive amplitudes,
calculated in perturbative QCD, while simultaneously improving its scaling behavior. The phenomenolog-
ical implications of this framework are analyzed by applying it to the pion’s electromagnetic form factor,
including the NLO contribution to the hard-scattering amplitude, and also to the pion–photon transition
at LO. For the pion wave function, an improved ansatz of the Brodsky–Huang–Lepage type is employed,
which includes an effective (constituent-like) quark mass, mq = 0.33GeV. Predictions for both form factors
are presented and compared to the experimental data, applying Brodsky–Lepage–Mackenzie commensu-
rate scale setting. We find that the perturbative hard part prevails at momentum transfers above about
20GeV2, while at lower Q2 values the pion form factor is dominated by Feynman-type contributions. The
theoretical prediction for the γ∗γ → π0 form factor indicates that the true pion distribution amplitude
may be somewhat broader than the asymptotic one.

1 Introduction

The theoretical description of the QCD running coupling
αs(Q2) in the low-momentum region has attracted much
interest in the last few years [1–8]. In particular, the pos-
sibility of including power corrections into αs(Q2), while
preserving its renormalization-group (RG) invariance, en-
ables the removal of the ghost (Landau) singularity and
restores its Q2 analyticity. Such power corrections, sub-
leading in the ultraviolet (UV) region, correspond to non-
analytical contributions to the β function as to make the
running coupling well-defined in the infrared (IR) regime
but, being not confined within the UV regime, they are
outside the operator product expansion.

The existence of power corrections in αs(Q2), if true,
would greatly affect our understanding of non-perturba-
tive QCD effects. For instance, a power correction to αs
gives rise to a linear term in the inter-quark static poten-
tial at short distances [9]. On a more speculative level,
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one may argue [7] that the source of such terms are small-
size fluctuations in the non-perturbative QCD vacuum,
perhaps related to magnetic monopoles in dual QCD or
non-local condensates. Besides, and in practice, a power-
behaved contribution at low scales can be used to remove
the Landau singularity, present in perturbation theory,
supplying in this way an IR stable, i.e., ghost-free run-
ning (effective) coupling that can be extended to the time-
like region [10,2–5,11]. As a result, re-summed expres-
sions, which typically involve integrations down to scales
µ � ΛQCD, are not affected by the Landau pole and can
be safely evaluated.

The aim of the present work is to develop in detail
a factorization and renormalization scheme, which self-
consistently incorporates such a non-perturbative power
correction in the running coupling, and then use it to as-
sess and explore exclusive processes. We do not, however,
propose to involve ourselves in the discussion of whether
or not such power corrections have a fundamental justi-
fication within non-perturbative QCD. We consider the
ambiguity in removing the Landau pole as resembling the
ambiguity in adopting a particular (non-IR-finite) renor-
malization scheme in perturbative QCD. However, this
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scheme dependence will be minimized by combining our
approach with the Brodsky—Lepage—Mackenzie (BLM)
commensurate scale setting procedure [12]. Recall in this
context that the parameter ΛQCD has no special meaning
in parameterizing the position of the Landau pole and can
be traded for an interpolating scale µ, on the basis of the
renormalization-scale freedom (see, for instance, [8]). The
justification for such an approach will be supplied a pos-
teriori by the self-consistent incorporation of higher-order
perturbative corrections and by removing the IR sensitiv-
ity of perturbatively calculated hadronic observables.

A key ingredient of our approach is that the modified
running coupling will be taken into account not only in
the factorized short-distance part, i.e., through the fixed-
order perturbation expansion, but also in the re-summed
perturbative expression for the exponentiation of soft and
collinear gluons (Sudakov effects) and in the RG controlled
evolution of the factorized parts. This means, in particu-
lar, that the exponent of the Sudakov suppression factor
will be generalized to include power corrections, which en-
code long-distance physics.

To accomplish these objectives, we adopt as a concrete
power-corrected running coupling an analytic model for
αs, recently proposed by Shirkov and Solovtsov [4], which
yields an IR finite running coupling. This model combines
Lehmann analyticity with the renormalization group to
remove the Landau singularity at Q2 = Λ2

QCD, without
employing adjustable parameters, just by modifying the
logarithmic behavior of αs by a (non-perturbative) mini-
mum power correction in the UV regime.

At the present stage of evidence, it would be, however,
premature to exclude other parameterizations for the be-
havior of the running coupling in the infrared, and one
could introduce further modifications [7,13]. It is never-
theless worth remarking that in a recent work by
Geschkenbein and Ioffe [14] on the polarization operator
(related to the Adler function) the same infrared limit
for the effective coupling was obtained as in the Shirkov-
Solovtsov approach. Furthermore, it was shown in [11]
that postulating that the Adler function D(Q2) is given
by integrating RQCD(s) over the physical region s > 0
only, one finds a Λ parameterization for the strong run-
ning coupling in the space-like region which coincides with
the pole-free one-loop expression proposed by Shirkov and
Solovtsov [4]. Hence, the assumption of analyticity of the
strong coupling in the complex Q2 plane, used by Shirkov
and Solovtsov, which at first sight might seem arbitrary,
is supported by the analyticity of a physical quantity.

Whatever the particular choice of power corrections
in the running coupling, it is clear, without the Landau
pole, IR sensitivity of loop integrations associated with
IR renormalons (see [1,15,16], and [17] for a recent re-
view) is entirely absent. We emphasize, however, that the
two approaches, though they both entail power-like cor-
rections ∝ (ΛQCD/Q)p, are logically uncorrelated, as the
removal of the Landau pole is a strong-coupling problem
(tantamount to defining a universal running coupling in
the IR region), whereas IR renormalons parameterize in
a process-dependent way the low-momentum sensitivity in

the re-summation of large-order contributions of the per-
turbative series of bubble chains. In some sense the two ap-
proaches appear to have complementary scopes: employ-
ing “forced analyticity” of the running coupling attempts
to incorporate non-perturbative input in terms of a power-
correction term in perturbatively calculated entities, like
the hard-scattering amplitude and the Sudakov suppres-
sion factor, that are in turn related to observables (e.g.,
form factors). The renormalon technique, on the other
hand, tries to deduce as much as possible about power cor-
rections from (re-summing) perturbation theory. Whether
power corrections inferred from renormalons can link dif-
ferent processes (universality assumption) is an important
question currently under investigation [2,18–21].

Continuing our previous exploratory study [22] (see
also [23] from which the present investigation partly de-
rives), we further extend and test our theoretical frame-
work with built-in analyticity by including into the cal-
culation of the pion form factor the next-to-leading order
(NLO) perturbative contribution to the hard-scattering
amplitude [24–27]. To compute the pion form factors in
the region b ∼ 1/ΛQCD, where the hadronic size becomes
important, the effects of the original k⊥ distribution of the
partons inside the pion have to be included. To this end, an
ansatz of the Brodsky–Huang–Lepage (BHL) type [28] for
the (soft) pion wave function is adopted. This ansatz in-
corporates an effective (i.e., dynamically generated) quark
mass to ensure that ψsoft

π (x,k⊥) has the correct behavior
for k⊥ = 0 and k3 → −∞. Predictions for both the pion
electromagnetic and the pion–gamma transition form fac-
tor, employing a pion light-cone wave function without a
mass term, were presented in [22,23] to which we refer
for further details. The influence of the mass term on the
hard pion form factor is very weak and it primarily affects
the soft contribution and the pion–photon transition form
factor. Moreover, the specific form of the ansatz for model-
ing the intrinsic transverse parton momentum in the pion
bound state is insignificant for the implementation of the
IR finite scheme, as its effects become relevant only for
large transverse distances below 1/ΛQCD that are outside
the scope of the present investigation.

To minimize the dependence on the renormalization
scheme and scale, we obtain our results using an optimized
renormalization prescription, based on the Brodsky—
Lepage—Mackenzie (BLM) [12] commensurate scale set-
ting. The effect of using a commensurate renormalization
scale in calculating Fπ and Fπγ is discussed quantitatively.
An important observation is that the theoretical predic-
tion for the hard (perturbative) contribution to the pion’s
electromagnetic form factor exhibits no IR sensitivity, in
contrast to approaches [29–31,27] with no IR fixed point
in the running coupling. The existence of an IR fixed point
in the effective strong coupling is implied by the general
success of the dimensional counting rules.

The major virtue of such a theoretical framework, the
latter being the object of this paper, is that it enables
the inclusion of transverse degrees of freedom, primordial
(i.e., intrinsic) [30] and those originating from (soft) glu-
onic radiative corrections [29,32], without entailing sup-
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pression of perturbatively calculated observables, viz., the
pion form factor, in the high-momentum region, where the
use of perturbative QCD is justified, and where suppres-
sion is merely the result of an unnecessarily severe IR reg-
ularization. This enhancement is (as noted above) due to
power-term generated contributions to the anomalous di-
mensions of the cusped Wilson line, related to the Sudakov
form factor, and such to the quark wave function that gov-
erns evolution of the factorized exclusive amplitude. These
modified anomalous dimensions will be treated here to
two-loop accuracy. Note that at the same time the artifi-
cial rising trend (see, e.g., [27,31]) of the magnitude of the
hard pion form factor at intermediate and low momenta
(below about 4GeV2), which solely originates from the
presence of the Landau singularity at Q2 = Λ2

QCD in the
effective coupling, is here entirely absent. Therefore, the
scaling behavior of the perturbatively calculated pion form
factor towards lower values of Q2 resembles the one com-
puted with a quasi-constant coupling. Indeed, the scaled
pion form factor is in a wide range of momenta almost
a straight line, as one should expect for the leading-twist
contribution (modulo logarithmic evolutional corrections
which for the asymptotic distribution amplitude start at
NLO and are negligible). Consequently, the magnitude of
the hard part at low Q2 is considerably reduced and falls
short to account for the data. In this momentum regime
the pion form factor is dominated by its soft Feynman-
type contribution.

Although most of our considerations refer to the pion
as a case study for the proposed IR finite framework, the
reasoning can be extended to describe three-quark systems
as well. This will be reported elsewhere.

The outline of the paper is as follows. In the next sec-
tion we briefly discuss the essential features of the IR finite
running coupling. In Sect. 3 we develop and present in de-
tail our theoretical scheme. Section 4 extends the method
to the NLO contribution to the hard-scattering ampli-
tude. An important ingredient in the phenomenological
analysis of the form factors is the BHL-type ansatz for
modeling ψsoft

π (x,k⊥), which includes an effective quark
mass. In Sect. 5 we discuss the numerical implementa-
tion of our scheme revolving around the appropriate kine-
matic cuts to ensure factorization of dynamical regimes
on the numerical level by appropriately defining the ac-
cessible phase space regions of transverse momenta (or
equivalently transverse distances) for gluon emission in
each regime. In Sect. 6 we apply these techniques to the
electromagnetic and the pion–gamma transition form fac-
tor. We also provide arguments for the appropriate choice
of the renormalization scale and link our renormalization
prescription to BLM optimal, i.e., commensurate, scale
setting. We also discuss how our scheme compares with
others. Finally, in Sect. 7, we summarize our results and
draw our conclusions.

2 Model for QCD running coupling

The key element of the analytic approach of Shirkov and
Solovtsov [4] is that it combines a dispersion-relation ap-

proach, based on local duality, with the renormalization
group to bridge the regions of small and large momenta,
providing universality at low scales. The approach is an
extension to QCD of a method originally formulated by
Redmond for QED [33].

At the one-loop level, the Landau ghost singularity is
removed by a single power correction and the IR finite
running coupling reads

ᾱan(1)s (Q2) ≡ ᾱpert(1)s (Q2) + ᾱnpert(1)s (Q2)

=
4π
β0

[
1

ln (Q2/Λ2)
+

Λ2

Λ2 −Q2

]
, (1)

where Λ ≡ ΛQCD is the QCD scale parameter.
This model has the following interesting properties. It

provides a non-perturbative regularization at low scales
and leads to a universal value of the coupling constant at
zero momentum ᾱ

(1)
s (Q2 = 0) = 4π/β0 � 1.396 (for three

flavors), defined only by group constants. No adjustable
parameters are involved and no implicit “freezing”, i.e.,
no (color) saturation hypothesis of the coupling constant
in the infrared is invoked.

Note that the IR fixed point
(i) does not depend on the scale parameter Λ – this being
a consequence of RG invariance – and
(ii) extends to the two-loop order, i.e., ᾱ(2)s (Q2 = 0) =
ᾱ
(1)
s (Q2 = 0) ≡ ᾱs(Q2 = 0). (In the following the bar

is dropped.) Hence, in contrast to standard perturbation
theory in a minimal subtraction scheme, the IR limit of
the coupling constant is stable, i.e., does not depend on
higher-order corrections and is therefore universal. As a
result, the running coupling also shows IR stability. This
is tightly connected to the non-perturbative contribution
∝ exp(−4π/αβ0), which ensures analytic behavior in the
IR domain by eliminating the ghost pole at Q2 = Λ2,
and extends to higher loop orders. Besides, the stability
in the UV domain is not changed relative to the conven-
tional approach and therefore UV perturbation theory is
preserved.

At very low-momentum values, say, below 1GeV,
ΛQCD in this model deviates from that used in minimal
subtraction schemes. However, since we are primarily in-
terested in a region of momenta which is much larger
than this scale, the role of this renormalization-scheme
dependence is only marginal. In our investigation we use
Λ
an(nf=3)
QCD = 242MeV which corresponds to ΛMS(nf=3)

QCD =
200MeV.

The extension of the model to two-loop level is pos-
sible, though the corresponding expression is too compli-
cated to be given explicitly [4]. An approximated formula
– used in our analysis – with an inaccuracy less than 0.5%
in the region 2.5Λ < Q < 3.5Λ, and practically coincid-
ing with the exact result for larger values of momenta, is
provided by [4]

αan(2)s (Q2) =
4π
β0


 1

ln Q2

Λ2 + β1
β2
0
ln
(
1 + β2

0
β1

ln Q2

Λ2

)
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+
1
2

1

1 − Q2

Λ2

− Λ2

Q2D1

]
, (2)

where β0 = 11 − (2/3)nf = 9, β1 = 102 − (38/3)nf = 64,
and D1 = 0.035 for nf = 3.

With experimental data at relatively low momentum-
transfer values for most exclusive processes, reliable theo-
retical predictions based on perturbation theory are diffi-
cult to obtain. Both the unphysical Landau pole of αs and
the IR instability of the factorized short-distance part in
the so-called end-point region are affecting such calcula-
tions, especially beyond leading order (LO). It is precisely
for these two reasons that the Shirkov–Solovtsov analytic
approach to the QCD running coupling can be profitably
used for computing amplitudes describing exclusive pro-
cesses [34–36], like hadronic form factors. The improve-
ments are then as follows.

(i) First and foremost, the non-perturbatively generated
power correction modifies the Sudakov form factor [32,37–
40] via the cusp (eikonal) anomalous dimension [41], and
changes also the evolution behavior of the soft and hard
parts through the modified anomalous dimension of the
quark wave function. This additional contribution to the
cusp anomalous dimension is the source of the observed IR
enhancement (at larger Q2 values) of hadronic observables
and helps taking into account non-perturbative corrections
(power terms in Q and the impact parameter b) in the per-
turbative domain, thus improving the quality and scaling
behavior of the (perturbative) form-factor predictions (at
low Q2). We emphasize in this context that the ambiguity
of the Landau remover is confined within the momentum
regime below the factorization scale, whereas above that
scale the power correction is unambiguous. Since we are
only interested in the computation of the hard contribu-
tion in the region Q2 � k⊥2, Q2 � m2

q, this ambiguity is
in fact of minor importance.

(ii) Factorization is ensured without invoking the addi-
tional assumption of “freezing” the coupling strength in
the IR regime by introducing, for example, an (external,
i.e., ad hoc) effective gluon mass in order to saturate color
forces at large distances, alias, low momenta.

(iii) The Sudakov form factor does not have to serve as
an IR protector against αs singularities. Hence, the extra
constraint of using the maximum between the longitudinal
and the transverse scale as argument of αs, proposed in
[29] and used in subsequent works, becomes superfluous.

(iv) The factorization and renormalization scheme we pro-
pose on that basis enables the optimization of the (arbi-
trary) constants which define the factorization and renor-
malization scales [32,37,42,43] – especially in conjunction
with the BLM commensurate scale procedure [12]. This
becomes particularly important when including higher-
order perturbative corrections (see Sect. 4).

3 Infrared-finite factorization
and renormalization scheme

The application of perturbative QCD is based on factor-
ization, i.e., how a short-distance part can be isolated from
the large-distance physics related to confinement. But in
order that observables calculated with perturbation the-
ory are reliable, one must deal with basic problems, like
the re-summation of “soft” logarithms, IR sensitivity, and
the factorization and renormalization-scheme dependence
of truncated perturbative expansions.

It is one of the purposes of the present work to give a
general and thorough investigation of such questions, as
they are intimately connected to the behavior of the QCD
(effective) coupling at low scales.

The object of our study is the electromagnetic pion’s
form factor in the space-like region, which can be ex-
pressed as the overlap of the corresponding full light-cone
wave functions between the initial (“in”) and final (“out”)
pion states: [44,45]

Fπ

(
Q2) =

∑
n,λi

∑
q

eq

∫
[dxi][d2k⊥i]

16π3

× ψout
π (xi, l⊥i, λi)ψin

π (xi,k⊥i, λi) , (3)

with

[dxi] ≡
∏

i

dxiδ


1 −

∑
j

xj


 , (4)

[d2k⊥i] ≡
∏

i

d2k⊥i16π3δ2


∑

j

k⊥j


 , (5)

where the sum in (3) extends over all Fock states and
helicities λi (with eq denoting the charge of the struck
quark), and where

l⊥i =

{
k⊥i + (1 − xi)q⊥i, struck quark,
k⊥i − xiq⊥i, spectators.

(6)

We will evaluate expression (3) using only the valence
(i.e., lowest particle-number) Fock-state wave function,
ψqq̄(x,k⊥), which provides the leading-twist-2 contribu-
tion, since higher light-cone Fock-state wave functions re-
quire the exchange of additional hard gluons and are there-
fore relatively suppressed by inverse powers of the momen-
tum transfer Q2. Furthermore, a recent study [46], based
on light-cone sum rules, shows that, for the asymptotic
pion distribution amplitude, the twist-4 contribution to
the scaled pion form factor (Q2Fπ(Q2)) is less than 0.05,
whereas the twist-6 correction turns out to be negligi-
ble. As we shall see in Sect. 5, this higher-twist correction
amounts to about 25% of the NLO hard contribution, cal-
culated in our scheme. This uncertainty in the theoretical
prediction is much lower than the quality of the currently
available experimental data.

In order to apply a hard-scattering analysis, we dissect
the pion wave function into a soft and a hard part with
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respect to a factorization scale µF, separating the pertur-
bative from the non-perturbative regime, and write (in the
light-cone gauge A+ = 0)

ψπ (x,k⊥) = ψsoft
π (x,k⊥) θ

(
µ2F − k2

⊥
)

+ ψhard
π (x,k⊥) θ

(
k2

⊥ − µ2F
)
, (7)

where the wave function ψπ(x,k⊥) is the amplitude for
finding a parton in the valence Fock state with longitudi-
nal momentum fraction x and transverse momentum k⊥
(we suppress henceforth helicity labels). Then the large
(perturbative) k⊥ tail can be extracted from the soft wave
function via a single-gluon exchange kernel, encoded in the
hard-scattering amplitude TH, so that [34,45]

ψhard
π (x,k⊥) =

∫ 1

0
dy
∫

d2l⊥TH (x,k⊥; y, l⊥)

×ψsoft
π (y, l⊥) . (8)

As a result, the pion form factor in (3) can be expressed
in the factorized form

Fπ(Q2) = ψout
soft ⊗ ψin

soft + ψout
soft ⊗ [TH ⊗ ψin

soft
]

+
[
ψout
soft ⊗ TH

]⊗ ψin
soft

+
[
ψout
soft ⊗ TH

]⊗ [TH ⊗ ψin
soft
]
+ . . . , (9)

where the symbol ⊗ denotes convolution defined by (8).
The first term in this expansion is the soft contribution
to the form factor (with support in the low-momentum
domain) that is not computable with perturbative meth-
ods. The second term represents the leading-order hard
contribution due to one-gluon exchange, whereas the last
one gives the NLO correction, and the ellipsis represents
still higher-order terms. We will not attempt to derive the
first term from non-perturbative QCD, but we shall adopt
for simplicity the phenomenological approach proposed by
Kroll and coworkers in [47] (see also [30]), including, in
particular, an effective (constituent-like) quark mass in
the soft pion wave function for the reasons already men-
tioned in the introduction and based on arguments to be
given below. This leads to a significantly stronger fall-off
withQ2 of the soft contribution to the space-like pion form
factor, compared to their approach, whereas the hard part
remains almost unaffected – as should be the case if factor-
ization of hadronic size effects is preserved. Though Jakob
and Kroll consider in [30] the option of a Gaussian k⊥ dis-
tribution with mq �= 0 and argue that in that case F soft

π is
significantly reduced, they do not present predictions for
the form factor and do not follow this option any further
(see, however, the predictions in [47]). For other, more
sophisticated, attempts to model the soft contribution to
Fπ(Q2), we refer to [46,48–50].

We now employ a modified factorization prescription
[29,30], which explicitly retains transverse degrees of free-
dom, and define (see for illustration Fig. 1)

ψhard
π = ψsoft

π

(
k2

⊥ ≤ C2
3

b2

)

�
q

�q �q

q
�

 in

� e�S TH e�S  out

�

Fig. 1. Illustration of the factorized pion form factor, ex-
hibiting the different regimes of dynamics. The wiggly line
denotes the off-shell photon. Gluon exchanges are not explic-
itly displayed. The region of hard-gluon re-scattering (LO and
NLO) is contained in the short-distance part, termed TH. The
blobs e(−S) represent in axial gauge Sudakov-type contribu-
tions, whereas non-perturbative effects are absorbed into the
(universal) pion wave functions ψinπ and ψoutπ

× exp
[
−S

(
C2
1

b2
≤ k2

⊥ ≤ C2
2ξ

2Q2
)]

× THard

(
Q2 ≥ k2

⊥ ≥ C2
3

b2

)
, (10)

with b, the variable conjugate to k⊥, being the transverse
distance (impact parameter) between the quark and the
anti-quark in the pion valence Fock state. The Sudakov-
type form factor exp(−S) comprises leading and next-
to-leading logarithmic corrections, arising from soft and
collinear gluons, and re-sums all large logarithms in the
region where Λ2

QCD � k2
⊥ � Q2 [42,43,51]. The source

of these logarithms is due to the incomplete cancellation
between soft-gluon bremsstrahlung and radiative correc-
tions. It goes without saying that the function S includes
anomalous-dimension contributions to match the change
in the running coupling in a commensurate way with the
changes of the renormalization scale (see below for more
details).

Going over to the transverse (or impact) configuration
space (typical in eikonalization procedures), the pion form
factor reads [29]1

Fπ

(
Q2) =

∫ 1

0
dxdy

∫ ∞

−∞

d2b⊥
(4π)2

Pout
π (y, b, P ′;C1, C2, C4)

× TH (x, y, b,Q;C3, C4)

× P in
π (x, b, P ;C1, C2, C4) , (11)

where the modified pion wave function is defined in terms
of matrix elements, viz.,

Pπ (x, b, P, µ) =
∫ |k⊥|<µ

d2k⊥e−ik⊥·b⊥P̃π (x,k⊥, P )

=
∫

dz−

2π
e−ixP+z−

〈
0
∣∣T (q̄(0)γ+γ5q (0, z−,b⊥

))∣∣π(P )
〉

A+=0, (12)

with P+ = Q/21/2 = P−′, Q2 = −(P ′ −P )2, whereas the
dependence on the renormalization scale µ on the r.h.s. of
1 Note that this expression cannot be directly derived from

(3)



142 N.G. Stefanis et al.: Analytic coupling and Sudakov effects in exclusive processes: pion and γ∗γ → π0 form factors

(12) enters through the normalization scale of the current
operator evaluated on the light cone and the dependence
on the effective quark mass has not been displayed ex-
plicitly. Note that in the light-cone gauge A+ = 0, the
Schwinger string in (12) reduces to unity. The factorized
hard part TH (x, y, b,Q;C3, C4) contains hard-scattering
quark-gluon subprocesses, including in the gluon propaga-
tors power-suppressed corrections due to their transverse-
momentum dependence. These gluonic corrections become
important in the end-point region (x → 0) for fixed Q2.
Furthermore, current quark masses, being much smaller
than the resolution scale (set by the invariant mass of the
partons) can be safely neglected in TH, so that (valence)
quarks are treated on-mass shell2.

A few comments on the scales involved and corre-
sponding dynamical regimes (see (11) and Fig. 2) are in
order.
(1) The scale C3/b serves to separate perturbative from
non-perturbative transverse distances (lower factorization
scale of the effective sub-sector and transverse cutoff). We
assume that some characteristic scale b−1

nonp � 〈k2
⊥〉1/2/

x(1−x) � 0.5GeV exists, related to the typical virtuality
(off-shellness) of vacuum quarks. This scale should also
provide the natural starting point for the evolution of the
pion wave function. In the following, we match the non-
perturbative scale C3/b with the scale C1/b, where the re-
summation of soft gluons in the effective sub-sector starts,
i.e., we set C1 = C3. The lowest boundary of the scale C1/b
(IR cutoff) is set by ΛQCD, though the results are not very
sensitive to using a somewhat larger momentum scale, as
we shall see later.
(2) The re-summation range in the Sudakov form factor
is limited from above by the scale C2ξQ (upper factoriza-
tion scale of the effective sub-sector and collinear cutoff)3.
This scale may be thought of as being an UV cutoff for the
effective sub-sector, i.e., for the Sudakov form factor, and
enables this way a RG controlled scale dependence gov-
erned by appropriate anomalous dimensions within this
sub-sector of the full theory.
(3) Analogously to these factorization scales, character-
ized by the constants C1, C2, and C3, we have introduced
an additional arbitrary constant C4 to define the renor-
malization scale C4f(x, y)Q = µR, which appears in the
argument of the running coupling αans (choice of renormal-
ization prescription). This constant will play an important
role in providing the link to the BLM (commensurate)
scale fixing. The running coupling plays a dual role: it de-
scribes the strength of the interaction at short distances
(in the fixed-order perturbation theory), and controls via
the anomalous dimensions of the cusped Wilson (world)
line and the quark field, respectively, soft-gluon emission
and RG evolution of TH and Pπ to the renormalization

2 Furthermore the chiral limit is adopted here, i.e., Mπ = 0,
since the pion mass is much smaller than the typical normal-
ization scale in (12)
3 Note that the constant C2 here differs in notation by a fac-

tor of 21/2 relative to that used by Collins, Soper and Sterman
in [42], i.e., CCSS

2 = 21/2C2

npQCD Effective Subsector

Resummed
Perturbation Theory

Fixed-Order
Perturbation Theory

µ2Λ
QCD
2 << λ2

AsymptoticsRG-Evolution

Q
2

Fig. 2. Regimes of chromodynamics characterized by scales
typical for the quanta involved

scale. The important point here is that the analytically
improved running coupling contains a non-perturbative
contribution, which reflects the nontrivial structure of the
QCD physical vacuum.

The appropriate choice of the unphysical and arbitrary
constants Ci will be discussed in our numerical analysis
in Sect. 5.

The ambiguities parameterized by the scheme
constants Ci emerge from the truncation of the pertur-
bative series and would be absent if one was able to de-
rive all-order expressions in the coupling constant. In fact,
the calculated (pion) form factor depends implicitly on
both scales: the adopted renormalization scale via αs, and
the particular factorization scheme through the anoma-
lous dimensions. Since the latter also depend on αs, the
factorization-scheme and the renormalization-scheme de-
pendences are correlated. On the other hand, the physi-
cal form factor is independent of such artificial scales and
satisfies µdF phys

π (Q2)/dµ = 0, µ being any internal scale.
Obviously, both scheme dependences should be treated si-
multaneously and be minimized in order to improve the
self-consistency of the perturbative treatment. In order to
render the perturbative prediction reliable, the parame-
ters Ci should be adjusted in such a way as to minimize
the influence of higher-order corrections, thus resolving
the scheme ambiguity. However, in the present investiga-
tion we are not going to explicitly match the fixed-order
NLO contributions with the corresponding terms in the
re-summed expression for the “soft” logarithms. Avail-
able calculations [24–27] of the NLO contribution to the
hard-scattering amplitude for the pion form factor do not
include the k⊥ components of the gluon propagators, mak-
ing such a task difficult for the moment. Instead, we are
going to show in Sect. 5 that a potential double counting of
re-summed and NLO contributions is de facto very small
and of no real practical importance, especially in view of
the poor quality of the existing experimental data. In addi-
tion, to limit a possible double counting as far as possible,
we have meticulously restricted the numerical evaluation
of our analytic expressions to the appropriate kinematical
regimes.

In (11), TH is the amplitude for a quark and an anti-
quark to scatter via a series of hard-gluon exchanges with
gluonic transverse momenta (alias inter-quark transverse
distances) not neglected from the outset. To leading order
in the running coupling, one has

TH (x, y, b,Q;µR) = 8CFα
an
s (µ2R)K0 (

√
xybQ) . (13)
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This result is related to the more familiar momentum-
space expression

TH (x, y,k⊥, l⊥, Q, µR) =
16πCFαs(µ2R)

xyQ2 + (k⊥ + l⊥)2
(14)

via the Fourier transformation

TH (x, y,k⊥, l⊥, Q, µR) =
∫ ∞

−∞
d2b⊥TH (x, y, b,Q, µR)

× exp [ib⊥ · (k⊥ + l⊥)] , (15)

where use of the symmetry of ψπ under x ↔ 1 − x ≡ x̄
has been made, and where CF = (N2

c − 1)/2Nc = 4/3
for SU(3)c. In the limit Q2 → ∞ (and x fixed) this ex-
pression coincides with the asymptotic hard scattering in
the collinear approximation, up to suppressed power cor-
rections. The latter become important in the end-point
region (x → 0) at fixed Q2, where the actual momentum
flow in the gluon propagator becomes small (typically of
the order of ΛQCD) so that gluonic transverse momenta
cannot be safely neglected.

The amplitude

Pπ (x, b, P � Q,C1, C2, µ) = exp [−s (x, b,Q,C1, C2)

− s (x̄, b, Q,C1, C2) − 2
∫ µ

C1/b

dµ̄
µ̄
γq (αans (µ̄))

]

×Pπ (x, b, C1/b) (16)

describes the distribution of longitudinal momentum frac-
tions of the qq̄ pair, taking into account the intrinsic trans-
verse size of the pion state [30] and comprising corrections
due to soft real and virtual gluons [29], including also evo-
lution from the initial amplitude Pπ(x, b, C1/b) at point
C1/b to the renormalization scale µ ∝ Q. Let us empha-
size at this point that the power-behaved term, αnperts ,
does not change the leading double logarithmic behav-
ior of the Sudakov exponent. The main effect of the ab-
sence of a Landau pole in the running coupling αans is
to make the functions s(x, b,Q,C1, C2), s(x̄, b, Q,C1, C2)
well-defined (analytic) in the IR region and to slow down
evolution by extending soft-gluon cancellation down to the
scale C1/b � ΛQCD, where the full Sudakov form factor
acquires a finite value, modulo its Q2 dependence (see
Fig. 3). In addition, as we shall see below, the Sudakov ex-
ponent contains power-behaved corrections in (C1/bΛ)2p

and (C2/ξQΛ)2p, starting with p = 1. Such contributions
are the footprints of soft-gluon emission at the kinematic
boundaries to the non-perturbative QCD regime, charac-
terized by the transversal (or IR) and the longitudinal (or
collinear) cutoffs.

The pion distribution amplitude evaluated at the (low)
factorization scale C1/b is approximately given by

Pπ (x, b, C1/b,mq) � fπ/
√

2
2
√
Nc

φπ (x,C1/b)Σ (x, b,mq) .

(17)
Because we retain the intrinsic transverse momenta of
the pion bound state, we have to make an ansatz for

their distribution. In the present work, we follow Brod-
sky, Huang and Lepage [28] (see, also [30,47]) and pa-
rameterize the distribution Σ(x,k⊥,mq) in the intrinsic
transverse momentum k⊥ (or equivalently the intrinsic
inter-quark transverse distance b) in the form of a non-
factorizing in the variables x and k⊥ (or x and b) Gaussian
function, so that

Ψπ (x,k⊥, C1/b,mq) =
fπ/

√
2

2Nc
Φπ(x,C1/b)Σ (x,k⊥,mq) ,

(18)
where

Φπ (x,C1/b) = AΦas(x) = A6x(1 − x) (19)

is the asymptotic distribution amplitude, A being an ap-
propriate normalization factor, and where

Σ (x,k⊥,mq) = 16π2β2g(x)Σ̂ (x,k⊥) Σ̂ (x,mq) , (20)

with
Σ̂ (x,k⊥) = exp

[−β2k⊥2g(x)
]
, (21)

and
Σ̂ (x,mq) = exp

[−β2m2
qg(x)

]
, (22)

models the distribution in the intrinsic transverse momen-
tum in the form of a Gaussian in the sense of the BHL
ansatz4.

Neglecting transverse momenta in (14) (collinear ap-
proximation), the only dependence on k⊥ resides in the
wave function. Furthermore, limiting the maximum value
of k⊥, these degrees of freedom can be integrated out in-
dependently for the initial and final pion states to give
way to the corresponding pion distribution amplitudes,
which depend only implicitly on the cutoff momentum
µ2 = (C1/b)2:

fπ/
√

2
2
√
Nc

φπ (x,C1/b) =
∫ (C1/b)2 d2k⊥

16π3
Ψπ (x,k⊥,mq) ,

(23)
where fπ = 130.7MeV and Nc = 3. Setting g(x) = 1/
(x(1 − x)) and integrating on both sides of this equation
over x, provides us with the constraint

1 = A

∫ 1

0
dx6x(1 − x) exp

[
− β2m2

q

x(1 − x)

]
, (24)

because by virtue of the leptonic decay π → µ+νµ the
r.h.s. of (23) is fixed to (fπ/21/2)/(2N1/2

c ), so that

∫ 1

0
dxφπ

(
x, µ2,mq = 0

)
= 1 (25)

and ∫
d2k⊥
16π3

Σ̂ (x,k⊥) = 1 (26)

4 The width parameter β of the Gaussian distribution should
not be confused with the β function
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Table 1. Values of parameters entering the pion wave function,
using the notations of [30]. The values in parentheses refer to
the case mq = 0. Here the subscript as on β2 refers to the
asymptotic distribution amplitude.

Input parameters Determined parameters

mq = 0.33GeV A = 1
6 · 10.01 ( 16 · 6)

fπ = 0.1307GeV β2as = 0.871GeV−2 (0.743GeV−2)
〈k⊥2〉1/2 = 0.352GeV (0.367GeV)

Pqq̄ = 0.306 (0.250)

for any factorization (normalization) scale µ. The contri-
butions from higher Fock states are of higher twist and
contribute corrections at higher order in 1/Q, i.e., they
are power-law suppressed.

Moreover, from π0 → γγ, we have

1 = 8Af2ππ
2β2

∫ 1

0
dx exp

[
− β2m2

q

x(1 − x)

]
, (27)

while the quark probability Pqq̄ and the average transverse
momentum 〈k⊥2〉 are given by

Pqq̄ = 12A2f2ππ
2β2

∫ 1

0
dxx(1−x) exp

[
− 2β2m2

q

x(1 − x)

]
, (28)

〈k⊥2〉 =
6A2f2ππ

2

Pqq̄

∫ 1

0
dxx2(1 − x)2 exp

[
− 2β2m2

q

x(1 − x)

]
.

(29)
By taking fπ and the value of the quark mass mq as input,

we determine the parameters A, β2, Pqq̄, and 〈k⊥2〉1/2
(see

Table 1).
How large should be the quark mass used in the BHL

ansatz? The parameter mq has not the meaning of a real
mechanical mass for the quark, but reflects the compli-
cated structure of the QCD vacuum. Let us make this
point more transparent. The QCD Lagrangian contains no
mass scale in the chiral limit. A mass scale enters pertur-
batively only through dimensional transmutation to en-
able renormalization. Non-perturbative scales derive from
vacuum fluctuations of some definite correlation length
in the context of specified QCD vacuum models. For in-
stance, in the chiral quark model derived from the in-
stanton approach ([52,53]), the pivotal non-perturbative
scale is the average instanton size ρ, whose inverse defines
a mass scale of the order of 0.600GeV. Breaking chiral
symmetry spontaneously in the instanton vacuum by the
delocalization of the fermionic zero modes, the massless
quark acquires a momentum-dependent mass to become a
quasi-particle. The obtained value of this effective mass in
the quark propagator is M ∼ ρ/R2 � 0.300 − 0.350GeV,
where R denotes the separation between the quark and
the antiquark. Note that though one deals with massive
quarks, higher Fock states are not necessarily zero, as the
quark propagator contains a renormalization factor Z ∼
1 + O(ρ2/R2) from which one infers that parton quarks

and the “constituent” quarks (the quasi-particles) of this
model are equal at leading order in the small parameter
ρ2/R2. Hence, on the basis of the non-perturbative struc-
ture of the QCD vacuum, we may conclude that the mass
scale characterizing the quarks in the pion is of the order of
the typical constituent quark mass. Then, it seems plausi-
ble to set the mass scalemq in the BHL ansatz equal to the
dynamical mass Mq obtained in such a non-perturbative
vacuum model, rather than to use a current quark mass of
a few MeV. Only for a very dilute instanton vacuum one
can realize Mq � ρ−1, but then the shape of the pion dis-
tribution amplitude deviates significantly from the asymp-
totic one becoming very flat. Actually, one may consider-
ably simplify the BHL ansatz by setting all scales respon-
sible for the intrinsic (transverse) structure of the hadron

(the pion), namely 〈k⊥2〉1/2
and mq equal to ΛQCD which

is of the same order of magnitude: 0.200–0.350GeV5. In-
deed, the predictions obtained with this simplification are
close to those calculated with the values given in Table 1.

Let us now return to (16). The Sudakov form factor
FS(ξ, b,Q,C1, C2), i.e., the exponential factor in front of
the wave function, will be expressed as the expectation
value of an open Wilson (world) line along a contour of
finite extent, C, which follows the bent quark line in the
hard-scattering process from the segment with direction P
to that with direction P ′ after being abruptly derailed by
the hard interaction which creates a “cusp” in C, and is to
be evaluated within the range of momenta termed “soft”,
confined within the range limited by C1/b (IR cutoff) and
C2ξQ (longitudinal cutoff) (where ξ = x, x̄, y, ȳ)6. Thus
we have [37–40,54]

FS (W (C)) =
〈
P exp

(
ig
∫

C

dz · taAa(z)
)〉

soft
, (30)

where P stands for path ordering along the integration
contour C, and where 〈. . .〉A denotes functional averag-
ing in the gauge field sector with whatever this may en-
tail (ghosts, gauge choice prescription, Dirac determinant,
etc.). Having isolated a sub-sector of the full theory (cf.
Fig. 2), where only gluons with virtualities between C1/b
and C2ξQ are active degrees of freedom, quark propa-
gation and gluon emission can be described by eikonal
techniques, using either Feynman diagrams [42,32] or by
employing a world-line casting of QCD which reverts the
fermion functional integral into a first-quantized, i.e.,
particle-based path integral [40].

Then the Sudakov functions, entering (16), can be ex-
pressed in terms of the momentum-dependent cusp
anomalous dimension of the bent contour to read

s (ξ, b,Q,C1, C2) =
1
2

∫ C2ξQ

C1/b

dµ
µ
Γcusp (γ, αans (µ)) , (31)

5 The average transverse momentum of the pion was recently
determined in [50] on the basis of local duality. Values between
0.260 and 0.320GeV were found, obviously consistent with the
actual value of ΛQCD and those in Table 1
6 This means that the region of hard interaction of the Wil-

son line with the off-shell photon is factorized out
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with the anomalous dimension of the cusp given by

Γcusp (γ, αans (µ)) = 2 ln
(
C2ξQ

µ

)
A (αans (µ))

+ B (αans (µ))
≡ Γ pert

cusp + Γ npert
cusp , (32)

γ = ln(C2ξQ/µ) being the cusp angle, i.e., the emission
angle of a soft gluon and the bent eikonalized quark line
after the external (large) momentum Q has been injected
at the cusp point by the off-mass-shell photon, and where
in the second line of (32) the superscripts relate to the
origin of the corresponding terms in the running coupling
(cf. (1), (2)). The functions A and B are known at two-
loop order:

A (αans (µ)) =
1
2

[
γK (αans (µ)) + β(g)

∂

∂g
K(C1, α

an
s (µ))

]

= CF
αans (g(µ))

π

+
1
2
K (C1)CF

(
αans (g(µ))

π

)2

, (33)

and

B (αans (µ)) = −1
2

[K (C1, α
an
s (µ)) + G (ξ, C2, α

an
s (µ))]

=
2
3
αans (g(µ))

π
ln
(
C2
1

C2
2

e2γE−1

4

)
. (34)

The first term in (33) is universal7, while the second one as
well as the contribution termed B are scheme dependent.
The K-factor in the MS scheme to two-loop order is given
by [37,38,42,43,55]

K (C1) =
(

67
18

− π2

6

)
CA − 10

9
nfTF + β0 ln (C1eγE/2) ,

(35)
with CA = NC = 3, nf = 3, TF = 1/2, and γE being the
Euler–Mascheroni constant.

The quantities K, G in (34) are calculable using the
non-Abelian extension to QCD [42] of the Grammer–
Yennie method [56] for QED. Alternatively, one can cal-
culate the cusp anomalous dimension employing Wilson
(world) lines [38–40,54]8. In this latter approach (see, e.g.,
[40]), the IR behavior of the cusped Wilson (world) line
is expressed in terms of an effective fermion vertex func-
tion whose variance with the momentum scale is governed
by the anomalous dimension of the cusp within the iso-
lated effective sub-sector (see Fig. 2). Since this scale de-
pendence is entirely restricted within the low-momentum
7 In works quoted above, the cusp anomalous dimension is

identified with the universal term, whereas the other (scheme-
and/or process-dependent) terms are considered as additional
anomalous dimensions. Here this distinction is irrelevant
8 The derivation of the cusp anomalous dimension in the

1/Nf approximation (single-bubble-chain approximation) was
given in [20], Appendix A

sector of the full theory, IR scales are locally coupled and
the soft (Sudakov-type) form factor depends only on the
cusp angle which varies with the inter-quark transverse
distance b ranging between C1/b and C2ξQ.

The corresponding anomalous dimensions are linked to
each other (for a nice discussion, see [37]) through the re-
lation 2Γcusp(αans (µ)) = γK(αans (µ)) with Γcusp(αans (µ)) =
CFα

an
s (µ2)/π, which shows that (1/2)γK = A (αans (µ)).

(Note that γG = −γK.)
The soft amplitude Pπ(x, b, C1/b, µ) and the hard-

scattering amplitude TH(x, y, b,Q, µ) satisfy independent
RG equations to account for the dynamical factorization
(recall that both b and ξ are integration variables) with so-
lutions controlled by the power-term modified “evolution
time” (see, e.g., [51] and earlier references cited therein):

τ

(
C1

b
, µ

)
=
∫ µ2

C2
1/b2

dk2

k2
α
an(1)
s (k2)

4π

=
1
β0

ln
ln
(
µ2/Λ2

)
ln
(
C2
1/ (bΛ)2

)

+
1
β0


ln µ2

(C1/b)
2 − ln

∣∣µ2 − Λ2
∣∣∣∣∣C2

1
b2 − Λ2

∣∣∣

 (36)

from the factorization scale C1/b to the observation scale
µ, with Λ denoting ΛQCD as before. The evolution time is
directly related to the quark anomalous dimension, viz.,
γq(αans (µ)) = −αans (µ2)/π. One appreciates that the sec-
ond term in (36) stems from the power-generated correc-
tion to the running coupling, αnperts , and is absent in the
conventional approach. At moderate values of µ2 this term
is “slowing down” the rate of evolution.

The leading contribution to the IR modified Sudakov
functions s(ξ, b,Q,C1, C2) (where ξ = x, x̄, y, ȳ) is ob-
tained by expanding the functions A and B in a power
series in αans and collecting together all large logarithms
(αans /π)

n ln((C2/C1)ξbQ)m, which can be transformed
back into large logarithms ln(Q2/k⊥2) in transverse-
momentum space. Employing (1) and (2), the leading con-
tribution results from the expression

s (ξ, b,Q,C1, C2) =
1
2

∫ C2ξQ

C1/b

dµ
µ

{
2 ln

(
C2ξQ

µ

)

×

αan(2)s (µ)

π
A(1) +

(
α
an(1)
s (µ)
π

)2

A(2) (C1)




+
α
an(1)
s (µ)
π

B(1) (C1, C2) + O
(
αans
π

)3
}
, (37)

where (2) is to be used in front of A(1), whereas the other
two terms are to be evaluated with (1). The specific values
of the coefficients A(i), B(i) are

A(1) = CF,

A(2) (C1) =
1
2
CFK (C1) ,
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B(1) (C1, C2) =
2
3

ln
(
C2
1

C2
2

e2γE−1

4

)
, (38)

in which the term proportional to A(1) represents the uni-
versal part. As now the power-correction term in αans gives
rise to poly-logarithms, a formal analytic expression for
the full Sudakov form factor is too complicated for being
presented. We only display the universal contribution in
LLA:

F univ
S (µF, Q) = exp

{
−CF

β0

[
ln

(
Q̃2

Λ2

)
ln

ln Q̃2/Λ2

lnµ2F/Λ2

− ln
Q̃2

µ2F
+ ln

(
Q̃2

µ2F

)
ln
Λ2 − µ2F
Λ2 +

1
2

ln2
Q̃2

µ2F
+ Li2

(
Q̃2

Λ2

)

− Li2

(
µ2F
Λ2

)]}
, (39)

where Q̃ represents the scale C2ξQ and the IR matching
(factorization) scale µF varies with the inverse transverse
distance b, i.e., µF = C1/b. Note that the four last terms
in this equation originate from the non-perturbative power
correction (cf. (32)), and that Li2 is the di-logarithm
(Spence) function which comprises power-behaved correc-
tions of the IR (bΛ) and the longitudinal (Q/Λ) cutoff
scales. In the calculations to follow, (37) is evaluated nu-
merically to NLLA with appropriate kinematic bounds to
ensure proper factorization at the numerical level. Above
(see (37)), we have replaced (α(1)s )2 by (αan(1)s )2. Here we
have an analytization ambiguity. Since nonlinear relations
are not preserved by the analytization procedure [57] (see
also [11]), we could have made the square of the running
coupling, (α(1)s )2, analytic as a whole. We plan to report
on these interesting conceptual issues of analytization in
a separate publication.

Note that, neglecting the power-generated logarithms,
we obtain an equation for the conventional Sudakov func-
tion, which we write as an expansion in inverse powers of
the first beta function coefficient β0 to read

s (ξ, b,Q,C1, C2) =
1
β0

×
[(

2A(1)Q̂+B(1)
)
ln
Q̂

b̂
− 2A(1)

(
Q̂− b̂

)]

− 4
β20
A(2)

(
ln
Q̂

b̂
− Q̂− b̂

b̂

)

+
β1
β30
A(1)

{
ln
Q̂

b̂
− Q̂− b̂

b̂

[
1 + ln

(
2b̂
)]

+
1
2

[
ln2
(
2Q̂
)

− ln2
(
2b̂
)]}

, (40)

where the convenient abbreviations [29] Q̂ ≡ ln(C2ξQ/Λ)
and b̂ ≡ ln(C1/(bΛ)) have been used.

This quantity differs from the original result given by
Li and Sterman in [29], and, though it almost coincides

numerically with the formula derived by Bolz [58], it differs
from that algebraically.

All told, the final expression for the electromagnetic
pion form factor at leading perturbative order in TH and
next-to-leading logarithmic order in the Sudakov form fac-
tor has the form

Fπ(Q2) =
2
3
A2πCFf

2
π

∫ 1

0
dx
∫ 1

0
dy
∫ ∞

0
bdbαan(1)s (µR)

×Φas(x)Φas(y) exp
[
−b2 (xx̄+ yȳ)

4β2as

]

× exp
[
−β2asm2

q

(
1
xx̄

+
1
yȳ

)]
K0 (

√
xyQb)

× exp [−S (x, y, b,Q,C1, C2, C4)] , (41)

where

S (x, y, b,Q,C1, C2, C4) ≡ s (x, b,Q,C1, C2)
+s (x̄, b, Q,C1, C2) + (x ↔ y)

−8τ
(
C1

b
, µR

)
, (42)

with τ(C1/b, µR) given by (36) and µR = C4f(x, y)Q. As
we shall show below, the effect of including the effective
quark mass in the hard part of the form factor is almost
negligible, as one should expect on theoretical grounds.

Before we go beyond the leading order in the pertur-
bative expansion of the hard-scattering amplitude, TH, let
us pause for a moment to comment on the pion wave
function. We have pro-actively indicated in (41) that the
asymptotic distribution amplitude Φas(x) = 6xx̄ will be
used.

A few words about this choice are now in order.
Hadron wave functions are clearly the essential vari-

ables needed to model and describe the properties of an
intact hadron. In the past, most attempts to improve the
theoretical predictions for the hard contribution to the
pion form factor have consisted of using end-point concen-
trated wave functions (distribution amplitudes). In this
analysis we refrain from using such distribution ampli-
tudes of the Chernyak–Zhitnitsky- (CZ-) type [59], refer-
ring for a compilation of objections and references to [22]
(see also [60]), and present instead evidence for an alter-
native source of enhancement due to the non-perturbative
power correction in the running coupling.

This IR enhancement effect was found in [22] to be
quite significant, even for the asymptotic solution (to the
evolution equation) which has its maximum at x = 1/2.
Indeed, the IR enhanced hard contribution can account
already at leading perturbative order for a sizable part
of the measured magnitude of the electromagnetic pion
form factor, though agreement with the currently avail-
able experimental (low-momentum) data calls for the in-
clusion of the soft, non-factorizing contribution (cf. (9))
[61–63,47] – even if the NLO correction is taken into ac-
count (see Sect. 5). Nevertheless, the true pion distribution
amplitude may well be a “hybrid” of the type Φtrue

π =
90%Φas

π +9%ΦCZ
π +1%C(3/2)

4 , where the mixing ensures a
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broader shape with the fourth-order, “Mexican hat”-like,
Gegenbauer polynomial C(3/2)

4 , being added in order to
cancel the dip of ΦCZ at x = 1/2.

First results from instanton-based approaches show
that the extracted pion distribution amplitudes are very
close to, albeit somewhat broader than, the asymptotic
form [64–66]. Similar results were also obtained using non-
local condensates [67,68]. The discussion of non-asymp-
totic pion distribution amplitudes will be conducted else-
where.

4 Pion form factor to order (αan
s (Q2))2

Next, we generalize our calculation of the hard contribu-
tion to the pion form factor by taking into account the
perturbative correction to TH of order α2s , using the re-
sults obtained in [24–27], in combination with our analyt-
ical, i.e., IR finite (IRF) factorization and renormalization
scheme.

To be precise, we only include the NLO corrections
to TH, leaving NLO corrections to the evolution of the
pion distribution amplitude aside. The reason is that for
the asymptotic distribution amplitude, at issue here, these
corrections are tiny, appearing first at NLO [69,27]. For
sub-asymptotic distribution amplitudes, however, evolu-
tional corrections [69] have to be taken into account.
Strictly speaking, the calculation below is incomplete, the
reason being that the transverse degrees of freedom in the
NLO terms of TH have been neglected, although the in-
trinsic ones in the wave functions have been taken into
account – in contrast to other approaches [27]. Hence, our
prediction should be regarded rather as an upper limit for
the size of the hard contribution to the pion form factor
than as an exact result. Taking into account the k⊥ de-
pendence of TH at NLO, as we did for the leading part,
this result might be somewhat reduced as shown for the
pion in [30] and for the nucleon in [70] (for a comprehen-
sive discussion of k⊥ effects, we refer to [71]), though we
expect that due to IR finiteness, this reduction should be
rather small and the quality of our predictions almost un-
changed. Note in this context that we always refer to the
asymptotic distribution amplitude of the pion. Broaden-
ing the pion distribution amplitude would lead to a larger
normalization of (form-factor) magnitudes. We would also
like to emphasize that other higher-twist contributions of
non-perturbative origin, as those mentioned before, may
also raise the magnitude of the form factor. However, such
contributions are not on the focus of the present work.

Applying these assumptions, (41) extends to NLO to
read

Fπ

(
Q2) = 16A2πCF

(
fπ/

√
2

2
√
Nc

)2 ∫ 1

0
dx
∫ 1

0
dy
∫ ∞

0
bdb

×αans
(
µ2R
)
Φas(x)Φas(y) exp

[
−b2 (xx̄+ yȳ)

4β2as

]

× exp
[
−β2asm2

q

(
1
xx̄

+
1
yȳ

)]

×K (
√
xyQb) exp (−S (x, y, b,Q,C1, C2, C4))

×
[
1 +

αans
π

(
fUV

(
x, y,Q2/µ2R

)
+ fIR

(
x, y,Q2/µ2F

)
+ fC(x, y))] , (43)

where the Sudakov form factor, including evolution, is
given by (42), µF = C1/b, and the functions fi are taken
from [27]. They are given by

fUV
(
x, y,Q2/µ2R

)
=
β0
4

(
5
3

− ln (x̄ȳ) + ln
µ2R
Q2

)
,

fIR
(
x, y,Q2/µ2F

)
=

2
3

(3 + ln (x̄ȳ))

×
(

1
2

ln (x̄ȳ) − ln
µ2F
Q2

)
,

fC(x, y) =
1
12

[−34 + 12 ln (x̄ȳ) + lnx ln y

+ ln x̄ ln ȳ − lnx ln ȳ − ln x̄ ln y
+ (1 − x− y)H(x, y) +R(x, y)] , (44)

and are related to UV and IR poles, as indicated by cor-
responding subscripts, that have been removed by dimen-
sional regularization along with the associated constants
ln(4π)−γE, whereas fC(x, y) is scale independent. In eval-
uating expression fC in (44), we found it particularly con-
venient to use the representation of the function H(x, y)
given by Braaten and Tse [26],

H(x, y) =
1

1 − x− y
[Li2(x̄) + Li2(ȳ) − Li2(x)

− Li2(y) + lnx ln y − ln x̄ ln ȳ] , (45)

where again Li2 denotes the di-logarithm function. For the
function R(x, y) we have used the expression derived by
Field et al. [24], except at point x ≈ y, where we employed
the Taylor expansion displayed below:

R(x, y) =
1

3 (−1 + y) y2

× [(−1 + 33y − 45y2 + 13y3
)
ln ȳ

+ y (−1 + y + (9 − 13y)y ln y)]

+
x− y

3(−1 + y)2y3
[
(−1 + y)2(−1 + 16y) ln ȳ

+ y
(−1 + 13y − 12y2 + 2y2 ln y

)]
+

(x− y)2

30(−1 + y)3y4

× [
(−1 + y)3

(
9 − 148y + 9y2

)
ln ȳ

− y
(
9 − 148y + 328y2 − 189y3

+ y3(5 + 9y) ln y
)]
. (46)

Note that this expression does not reproduce its counter-
part in [24]. It must be remarked once again that evaluat-
ing (43) there is an analytization ambiguity similar to that
encountered in the calculation of the Sudakov exponent.
This question will be addressed elsewhere.

Having developed in detail the theoretical apparatus,
let us now turn to the concrete (numerical) calculation of
the pion form factor at NLO.
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5 Numerical analysis

This section implements factorization on the numerical
level, thus providing the bridge between the analytic
framework, developed and discussed in the previous sec-
tions, and numerical calculations to follow in the sub-
sequent section. This is done by appropriately defining
the accessible phase space regions (kinematic integrals) of
transverse momenta (or equivalently transverse distances
b) for gluon emission in each regime, making explicit the
inherent kinematical restrictions on the momenta of hard
(soft) gluons due to factorization. The numerical analysis
below updates and generalizes our previous investigations
in [22,23].

In order to set up a reliable algorithm for the numeri-
cal evaluation of the expressions presented above, we have
to ensure that this is done in kinematic regions where
use of fixed-order or re-summed perturbation theory is le-
gal. Further, expedient restrictions have to be imposed
to avoid double counting of gluon corrections by care-
fully defining the validity domain of each contribution to
the pion form factor, in correspondence with Fig. 2. These
kinematic constraints are compiled below.

Kinematic cuts

(1) C1/b > ΛQCD; otherwise the whole Sudakov expo-
nent exp(−S) (cf. (42)) is continued to zero because this
large-b region is properly taken into account in the wave
functions. This condition excludes from the re-summed
perturbation theory soft gluons with wavelengths larger
than C1/Λ, which should be treated non-perturbatively.
In other words, it ensures the separation (factorization) of
the effective sub-sector from the genuine non-perturbative
regime (cf. Fig. 2).
(2) C2ξQ > C1/b; otherwise each Sudakov exponent
exp[−s(ξ, b,Q,C1, C2)] in (42) is “frozen” to unity because
this small-b region is dominated by low orders of perturba-
tion theory rather than by the re-summed perturbation se-
ries, and consequently contributions in this region should
be ascribed to higher-order corrections to TH, which we
have taken into account explicitly at NLO. This condi-
tion establishes proper factorization between re-summed
and fixed-order perturbation theory and helps avoid dou-
ble counting of such contributions (always working in the
gauge A+ = 0). Yet evolution is taken into account to
match the scales in our “gliding” factorization scheme.
(3) C4f(x, y)Q > C1/b; otherwise the evolution time
τ(C1/b, µR) in (42) is contracted to zero, i.e., evolution
is “frozen”. The renormalization scale should be at least
equal to the factorization scale, so that the running cou-
pling has always arguments in the range controlled by (re-
summed or fixed-order) perturbation theory.
(4) C4f(x, y)Q > C2ξQ; otherwise evolution to that scale
is “frozen” because this region is appropriately accounted
for by the Sudakov contribution. This helps avoiding dou-
ble counting of terms which belong to the re-summed
rather than to the fixed-order perturbation theory. (No
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Fig. 3. Behavior of the Sudakov form factor with respect to
the transverse separation b for three representative values of
the momentum transfer Q2: Q1 = 2GeV, Q2 = 5GeV, and
Q3 = 10GeV, with all ξi = 1/2, and where we have set C1 =
2e−γE , C2 = e−1/2 and ΛQCD = 0.242GeV. The dotted curve
shows the result obtained with αMS

s , and ΛQCD = 0.2GeV for
Q2 = 5GeV, using the same set of Ci as before. Notice that
in this case, evolution is limited by the (renormalization) scale
µR = t = {max(xy)1/2Q,C1/b}, as proposed in [29]. However,
the enhancement at small b values due to the quark anomalous
dimension is not neglected here

overlap at the boundary characterized by the scale µ2 in
Fig. 2.)
(5) C4f(x, y)Q > C1/b; otherwise the two scales µR =
µF = C1/b are identified in the function fUV(x, y) (by the
same reasoning as above). If µR ≤ ΛQCD, then fUV(x, y)
is set equal to zero.
(6) C1/b > ΛQCD; otherwise the function fIR(x, y) is set
equal to zero. The last two restrictions exclude contribu-
tions from perturbative terms when they are evaluated in
the non-perturbative kinematic domain.

To illustrate the difference in technology between ap-
proaches employing the conventional expression for the
full Sudakov exponent [32,29], on one hand, and our analy-
sis, on the other, we show exp(−S) graphically in Fig. 3 for
three different values of the momentum transfer and ξ =
1/2. In contrast to Li and Sterman [29], the evolutional
contribution is not cut-off at unity, whenever C2ξQ <
C1/b. The dotted curve shows the result for (40) with-
out this cutoff. One infers from this figure that their sug-
gestion to ignore the enhancement due to the anomalous
dimension does not apply in our case because the IR mod-
ified Sudakov form factor is not so rapidly decreasing as
b increases, owing to the IR finiteness of αans . Indeed, as
Q becomes smaller, exp(−S) remains constant and fixed
to unity for increasing b, providing enhancement only in
the large-b region before it reaches the kinematic bound-
ary C1/b = ΛQCD, where it is set equal to zero. As a
result, for small Q values, like Q1 = 2GeV, the enhance-
ment due to the quark anomalous dimension cannot be
associated with higher-order corrections to TH, since it
operates at larger b values, and for that reason it should
be taken into account in the Sudakov contribution. Only
for asymptotically large Q values, when the IR modified
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Sudakov form factor and the conventional one become in-
distinguishable, the evolutional enhancement becomes a
small effect – strictly confined in the small-b region – and
can be safely ignored. On the other hand, because the
Sudakov exponent is bounded at fixed Q2, the Sudakov
exponential remains finite until the edge of phase space,
C1/bcr � ΛQCD, also providing IR enhancement. This be-
havior is best appreciated by comparing the dashed and
dotted curves, both at Q2 = 5GeV, in Fig. 3.

The behavior of the Sudakov form factor, we stress,
shows that power-induced sub-leading logarithmic correc-
tions are relevant in the range of currently probed mo-
mentum-transfer values. Hence, the advantage of employ-
ing such a scheme to calculate hadronic observables, for
instance the pion form factor, is that the hard (perturba-
tive) contribution is enhanced, relative to the calculation
in the MS scheme, and the self-consistency of the per-
turbative treatment towards lower Q2 values, where it is
not justified, is significantly improved (no enhancement
caused by the Landau obstruction; hence better scaling).

This is because the range in which soft gluons build
up the Sudakov form factor is enlarged and inhibition of
bremsstrahlung sets in at larger Q2. Let us mention in this
context that power contributions in the radiative correc-
tions to the meson wave function could lead to suppres-
sion of soft-gluon emission at large transverse distance b.
Indeed, Akhoury, Sincovics and Sotiropoulos [72] have re-
summed such power corrections, associated to IR renor-
malons, with the aid of an effective gluon mass. They
found Sudakov-type suppression on top of the Sudakov
suppression discussed so far. The discussion of such IR
renormalon-based contributions in conjunction with our
IR finite approach will be presented elsewhere.

6 Phenomenology

Let us now present phenomenological applications of our
scheme. Using the techniques discussed above, we obtain
for the electromagnetic pion form factor the theoretical
predictions shown in Fig. 4. A set of constants Ci (i = 1, 2,
3) which eliminate artifacts of dimensional regularization,
while practically preserving the matching between the re-
summed and the fixed-order calculation, are given in Ta-
ble 2 in comparison with other common choices of these
constants. Moreover, this factorization scale setting en-
ables us to naturally link our scheme to the BLM com-
mensurate scale method [12] in fixing the renormaliza-
tion scale. Indeed, since the adopted value of C1 elimi-
nates both the log term in the K-factor (see (35)), which
contains the β function, and also the scheme-dependent
term B in the cusp anomalous dimension (see (34)), this
choice corresponds to a conformally invariant framework
with β0 = 0, and therefore connects to the commensurate
scale procedure. Hence, we set C4 = C2 exp (−5/6), which,
for our choice of C2 = exp (−1/2), rescales Q in the MS
scheme we use by a factor of exp (−4/3). In addition, to
avoid large kinematical corrections due to soft-gluon emis-
sion, we set f(x, y) = (xy)1/2 to link the renormalization
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Fig. 4. Space-like pion form factor calculated within our IR
finite scheme with Φas and including an effective (constituent-
like) quark mass of mq = 0.33GeV in the pion wave function.
The broken lines show the IR enhanced hard contributions
obtained with our scheme using commensurate scale setting:
LO calculation (dashed-dotted line); NLO calculation (dotted
line). The dashed line gives the result for the soft, Feynman-
type contribution, computed with mq = 0.33GeV in the pion
wave function. The solid line represents the sum of the NLO
hard contribution and the soft one. The data are taken from
[73,74]

scale to the typical momentum flow in the gluon propa-
gators [55]. In this way, scheme and renormalization-scale
ambiguities are considerably reduced, as the theoretical
predictions are evaluated at a physical momentum scale:

µBLM = µR exp(−5/6), (47)

where
µR = C4f(x, y)Q = C4

√
xyQ. (48)

We emphasize, however, that these favored values of the
scheme constants by no means restrict the validity of our
numerical analysis. They merely indicate the anticipated
appropriate choice of the factorization and renormaliza-
tion scales with respect to observables and theoretical
self-consistency. Other choices of these parameters do not
change the qualitative features of our predictions.

Before we proceed with the discussion of these results,
let us first present the theoretical prediction for the pion–
photon transition form factor Fπγ∗γ(Q2, q2 = 0) in which
one of the photons is highly off-shell and the other one is
close to its mass shell. In leading perturbative order, this
form factor is given by the expression (cf. [47])

Fπγ

(
Q2) =

A√
3π

∫ 1

0
dx
∫ ∞

0
dbb

(fπ/
√

2)Φas(x)
2
√
Nc

× exp
(−xx̄b2/4β2as) (49)

× exp
(

−β2asm2
q

1
xx̄

)(
4πK0

(√
x̄bQ

))
e−Sπγ ,

where the Sudakov exponent, including evolution, has the
form

Sπγ (x, x̄, b,Q,C1, C2, C4) = s(x, b,Q) + s(x̄, b, Q)
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Table 2. Different sets of coefficients Ci and values of the K-factor and the quantity (cf. (34)) κ =
ln(C2

1e2γE−1/4C2
2 ), corresponding to different factorization and renormalization prescriptions. The choice of C4

in this work corresponds to BLM-type commensurate scale fixing

Scheme parameters Ci

Choice C1 C2 = (1/21/2)CCSS
2 [42] C3 C4 K κ

canonical 2 exp(−γE) 1/21/2 2 exp(−γE) – 4.565 -0.307
SSK [22] exp[−(1/2)(2γE − 1)] 1/21/2 exp[−(1/2)(2γE − 1)] – 2.827 0
this work 2 exp(−γE) exp(−1/2) 2 exp(−γE) exp(−4/3) 4.565 0
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Fig. 5. Pion–photon transition form factor for the asymp-
totic distribution amplitude, calculated in the IRF scheme. The
dashed line shows the prediction for the BHL ansatz for the
pion wave function which includes an effective (constituent-
like) quark mass of mq = 0.33GeV. Commensurate scale set-
ting is used, i.e., C4 = C2 exp (−5/6) with C2 = exp (−1/2).
For comparison, we also show the prediction (solid line) ob-
tained without a quark mass and using a non-commensurate
renormalization scale (C4 = C2 = exp (−1/2)). The horizontal
line represents the asymptotic behavior. The data are taken
from [75,76]

−4τ
(
C1

b
, µR

)
. (50)

The main difference relative to the previous case is that
this form factor contains only one pion wave function,
whereas the associated hard-scattering part, being purely
electromagnetic at this order, does not depend directly on
αs. The only dependence on the (running) strong coupling
enters through the anomalous dimensions in the Sudakov
form factor. The result of this calculation is displayed in
Fig. 5.

All constraints on kinematics set forward in the numer-
ical evaluation of the electromagnetic pion form factor are
relevant to this case too, except the requirement which
deals specifically with the choice of the renormalization
scale, which now is set equal to µR = C4xQ because only
one pion wave function is involved. Another reasonable
choice would be µR = C4(xx̄)1/2Q, which entails evolution
to a lower scale, hence reducing evolutional enhancement
through τ(C1/b, µR) by approximately 6%.

Let us now discuss these effects more systematically.
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Fig. 6. Saturation behavior of the pion electromagnetic form
factor, calculated in the IRF scheme at NLO with commen-
surate scale setting and including a mass term (with mq =
0.33GeV) in the BHL ansatz for the soft pion wave function.
The scheme parameters are defined in Table 2. Here bcr de-
notes the integration cutoff over transverse distances in (43).
The momentum-transfer values are as in Fig. 3

It is obvious from Fig. 4 that the IR enhanced hard
contribution to Fπ(Q2) with optimized choice of scales is
providing a sizable fraction of the magnitude of the form
factor – especially at NLO. This behavior is IR stable from
low to high Q2 values, exhibiting almost exact scaling (in
accordance with the nominal scaling of the leading-twist
prediction), which shows that the analytic coupling is al-
most constant in a wide range of Q2 values. In contrast to
other approaches [31,27,46], which involve a running αs
coupling without an IR fixed point, there is no artificial
rising at low Q2 of the hard form factor, resulting from
the unphysical Landau pole. Furthermore, by employing
a commensurate scale setting to fix the renormalization
point, the scheme and renormalization-prescription depen-
dence of our predictions has been minimized. In addition,
the imposed kinematical constraints in our numerical anal-
ysis ensure that the contributions, originating from differ-
ent phase space regions, do not overlap to give rise to
double counting.

The reduced sensitivity of the perturbatively calcu-
lated hard form factor to the end-point region is also re-
flected in its saturation behavior. One sees from Fig. 6
that the bulk of the scaled form factor Q2Fπ(Q2) is al-
ready accumulated below bcrΛQCD/C1 ≤ 0.5, i.e., for short
transverse distances, where the application of perturba-
tive QCD is self-consistent. All curves shown rise very
steeply to their full height at the integration cutoff bcr =
C1/ΛQCD, beyond which they flatten out, indicating that
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Table 3. Calculated pion form factor at two values of Q2. The
first two columns show the results obtained in the present work
in comparison with those calculated by Jakob and Kroll (JK)
[30] (third column), and by Melić, Nižić and Passek (MNP)
[27] (last two columns)

Q2 LO LO+NLO LO LO LO+NLO
[GeV2] (this work) (this work) (JK) (MNP) (MNP)

4 0.128 0.191 0.08 0.131 0.211
10 0.137 0.186 0.08 0.109 0.164

remaining contributions are truly of non-perturbative ori-
gin. One observes that the perturbative treatment starts
to be reliable already at Q2 = 4GeV2 and improves fur-
ther, albeit not dramatically, as the momentum transfer
increases. A fast saturation behavior in the small b region,
where contamination with non-perturbative contributions
is still not serious and the coupling constant is small, is
considered as a standard to judge the self-consistency of
the perturbative method applied. Though the Sudakov
form factor contains considerable contributions from glu-
ons with wavelengths of the order of C1/ΛQCD due to
the IR finiteness of the running coupling (see Fig. 3) –
especially at low momentum transfer – we realize that
the form factor itself, i.e., the physical observable, does
not receive strong contributions from this end-point (b)
region. Moreover, the form-factor calculation does not re-
ceive large contributions from the end-point region in x
as well, as we use only the asymptotic pion distribution
amplitude (or something close to it). Hence, from the the-
oretical point of view, the quality and self-consistency of
the perturbative treatment have been improved relative
to previous approaches [29,30].

Figure 7 shows the influence of the effective quark mass
on the pion form factor. The designations are as follows:
The solid line plots (F hard

mq=0/F
hard
mq 	=0)|NLOcomm and the dotted

line ((F soft
mq=0/F

soft
mq 	=0)|comm). It is obvious that the effect of

the quark mass on the hard part is negligible in size and
does not depend on the variation in Q2, whereas the soft
contribution gets significantly reduced as Q2 grows. The
dashed line, standing for the expression (F hard

comm/
F hard
non−comm)|NLOmq 	=0, in the same figure quantifies the effect

of using a commensurate scale setting for the renormaliza-
tion scale. As one sees, this amounts to an enhancement
factor of about 1.5.

The advantages of our framework may become more
transparent by comparing our results with those obtained
in other analyses. This is done for the pion form factor in
Table 3.

Comparison of our values with those calculated by
Jakob and Kroll [30] shows that the suppression of the
hard part of the form factor due to the inclusion of trans-
verse degrees of freedom is counteracted by the power-
induced enhancement, amounting to an average enhance-
ment of about 50% relative to their values. This is achieved
by using (almost) the same root mean square transverse

momentum of 〈k⊥2〉1/2
= 0.352GeV, as in their anal-
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Fig. 7. Effect of using a BHL-type ansatz for the pion
wave function with an effective (constituent-like) quark
mass of mq = 0.33GeV. The solid line plots the ra-
tio (F hard

mq=0/F
hard
mq �=0)|NLOcomm and the dotted line the ratio

(F soft
mq=0/F

soft
mq �=0)|comm versus the momentum transfer Q2. The

dashed line shows the ratio (F hard
comm/F

hard
non−comm)|NLOmq �=0 of the

hard part of the pion form factor for a BLM commensurate
scale setting relative to a conventional one with C4 = C2 =
exp (−1/2) (cf. Table 2)

ysis, and with a reasonable probability for the valence
Fock state of Pqq̄ = 0.306 (see Table 1). The inclusion of
an effective (constituent-like) quark mass in the Gaussian
ansatz for the distribution of intrinsic transverse momen-
tum in the pion wave function changes dramatically the
fall-off behavior of the soft contribution to the form fac-
tor, as compared to the JK analysis, though its maximum
size remains almost unchanged, and its influence on the
hard part is very small (cf. Figs. 4 and 7). Indeed, one in-
fers from Fig. 4 that F soft

π becomes equal to F hard
π already

at Q2 � 18GeV2 (LO result), or even at Q2 � 12GeV2

when the NLO corrections are included. This behavior of
F soft

π falls well in line with the correct behavior of Ψ soft
π

for k⊥ = 0 and k3 → −∞, restored by the mass term and
the arguments on the non-perturbative vacuum dynamics
given above.

On the other hand, comparison with the values com-
puted by Melić, Nižić and Passek [27] at leading order, by
completely ignoring transverse degrees of freedom, reveals
that in the Q2 domain, where the influence of the Lan-
dau singularity has died out (values for Q2 = 10GeV2 in
Table 3), there is still enhancement of about 17%. Com-
paring our results with theirs at next-to-leading order, we
conclude that our choice of scheme and renormalization
scales is consistent with a proper matching between gluon
corrections, calculated on a term-by-term perturbation ex-
pansion (NLO corrections to TH), and those due to the re-
summed perturbative series (Sudakov form factor). There-
fore, double counting of such contributions in our scheme,
if any, must indeed be negligible. Moreover, the scaling be-
havior of the calculated perturbative (hard) form factor is
considerably improved, complying with the nominal scal-
ing of the leading-twist prediction. Indeed, one observes
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Fig. 8. The ratio Rπ(Q2) ≡ F SSK
π

(
Q2) /FMNP

π

(
Q2) versus the

momentum transfer Q2. F SSK
π is the pion form factor given in

(43), FMNP
π the expression derived in [27] (cf. Table 3), using

the asymptotic pion distribution amplitude. The decrease of
this ratio below Q2 � 5GeV2 signals the breakdown of pertur-
bation theory in the calculation of [27] owing to the Landau
singularity in the conventional αs representation they use

(cf. (3)) that the deviation from exact scaling, associated
with NLO evolutional corrections of the asymptotic dis-
tribution amplitude, is, as stated before, negligible.

The illustration of the enhanced form-factor behavior
(always assuming the asymptotic form of the pion distri-
bution amplitude) is given in Fig. 8 in terms of the ratio
between F SSK

π (Q2), calculated in this work, and FMNP
π

(Q2), obtained by Melič et al. in [27]. One sees from that
figure that at Q2 values up to about 5GeV2, this ra-
tio is less than unity, clearly exhibiting the singular IR
behavior of the conventional αs(Q2) representation em-
ployed by these authors. Contrary to that, above approxi-
mately 10GeV2, this ratio scales with Q2 at a fixed value
of about 1.25. Hence, restoring analyticity of the effec-
tive QCD coupling (by a power-correction term), removes
the artificial rise of the form factor, owing to the rapid
increase of the perturbative coupling at low momentum,
and stabilizes its low-Q2 behavior, providing enhancement
only in the momentum region which is controlled by self-
consistent perturbation theory.

Let us turn again to the calculation of Fπγ(Q2). Fig-
ure 5 shows our theoretical predictions for this form factor
using the same set of scheme parameters C1, C2, C3, given
in Table 2. The dashed line includes a quark mass term
and employs commensurate scale setting for the renor-
malization point. The solid line shows the prediction for
mq = 0 and a non-commensurate renormalization scale,
with C4 = C2 = exp (−1/2). This latter curve reproduces
the recent high-precision CLEO [75] and also the earlier
CELLO [76] data with almost the same numerical accu-
racy as the dipole interpolation formula. However, we re-
gard the lower curve as being more realistic because a
physical renormalization scale has been used (provided
our choice of C4 = C2 exp (−1/2) is approximately cor-
rect). Remarkably, the predicted magnitude of Q2Fπγ ,
being somewhat below the data, allows some broaden-
ing of the pion distribution amplitude, as recently found
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Fig. 9. Effects of commensurate scale fixing and a non-zero
quark mass in the BHL ansatz for the pion wave function in the
pion–photon transition form factor. The solid line shows the ra-
tio (Fmq=0

πγ /F
mq �=0
πγ )|comm for a commensurate scale fixing and

the dotted line the same ratio for a non-commensurate scale
fixing: (Fmq=0

πγ /F
mq �=0
πγ )|non−comm with C4 = C2 = exp (−1/2).

The dashed line effects the difference between using a com-
mensurate scale fixing and a conventional one with C4 = C2 =
exp (−1/2) for the ratio (F comm

πγ /F non−comm
πγ )|mq �=0 with a non-

vanishing quark mass mq = 0.33GeV

in instanton-based approaches [64,66] or using non-local
condensates [67,68].

The sensitivity of the pion–photon transition form fac-
tor to the quark mass and the commensurate scale setting
is discussed in Fig. 9.

Our prediction is consistent with the result obtained
by Brodsky et al. in [77], who also use commensurate scale
setting and include in addition the LO QCD radiative cor-
rection to Fπγ with a running coupling “frozen” at low mo-
menta by virtue of an effective gluon mass9. The close re-
semblance between the two approaches becomes apparent
by comparing the corresponding running couplings against
the momentum transfer. In Fig. 10 we show the ratio (solid
line)

Rα1
s

(
Q2) ≡ αsan

(
Q2
)

αsV (Q2)
, (51)

with αsan(Q
2) given by (1) and the coupling (effective

charge) in the so-called V scheme, defined by

αsV
(
Q2) =

4π
β0

1

ln
(

Q2+4m2
g

Λ2
V

) , (52)

where ΛV = 0.16 [77] and m2
g = 0.19GeV2. The dashed

line (Rα2
s
(Q2)) represents this ratio with ΛV set equal to

Λ = 0.242GeV in (52). Though, strictly speaking, it is in-
consistent to equalize scheme-dependent parameters, the
message of this figure is that the two parameterizations
are very close to each other, although the analytic cou-
pling has a larger normalization at low Q2.
9 The connection between the modified convolution scheme,

which explicitly retains transverse degrees of freedom, and the
use of an effective gluon mass to simulate the effect of the
Sudakov suppression factor, was discussed in [71]
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Table 4. Values of the scaled space-like pion form factor, calculated in our IRF
scheme at different momentum transfers Q2. Q2FLO

π (Q2) is the LO result given
by (41) and represented by the dashed-dotted line in Fig. 4. Q2FNLO

π (Q2) (dotted
line in Fig. 4) is the expression displayed in (43) and comprises the LO and NLO
contributions to the hard-scattering part (for more details, see Sect. 4). These re-
sults were obtained with a non-factorizing BHL-type ansatz for the pion wave
function (i.e., with an effective (constituent-like) quark mass mq = 0.33GeV in
the pion wave function), and employing BLM commensurate (renormalization)
scale setting. The last two columns show the results for the pion–photon transi-
tion. Q2Fπγ(Q2) stands for the expression (49) and commensurate scale setting,
whereas Q2F

mq=0
πγ (Q2) shows the results without the inclusion of a quark mass

and with a non-commensurate renormalization scale (cf. dashed and solid lines
in Fig. 5, respectively). The asymptotic pion distribution amplitude is always as-
sumed

Q2 [GeV2] Q2FLO
π (Q2) Q2FNLO

π (Q2) Q2Fπγ(Q2) Q2F
mq=0
πγ (Q2)

2 0.1121 0.1831 0.1180 0.1370
4 0.1282 0.1907 0.1317 0.1576
6 0.1340 0.1904 0.1375 0.1668
8 0.1364 0.1882 0.1407 0.1721
10 0.1373 0.1856 0.1428 0.1755
15 0.1368 0.1790 0.1458 0.1803
20 0.1351 0.1731 0.1474 0.1828
30 0.1312 0.1639 0.1491 0.1854
40 0.1275 0.1568 0.1500 0.1867
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Fig. 10. The ratio Rα1
s
(Q2) ≡ αsan

(
Q2) /αsV

(
Q2) versus the

momentum transfer Q2. αsan is the analytic running coupling
in one-loop approximation (see (1)). The effective charge αsV,
used by Brodsky et al. in [77], is defined in (52). For more
explanations and the definition of Rα2

s
(Q2), see the text

Closing our discussion of the photon to pion transition,
let us mention that other authors [78–80] obtain similarly
good numerical agreement of Q2Fπγ∗(Q2) with the exper-
imental data, following different premises based on QCD
sum rules.

Finally, to facilitate a more detailed comparison of our
results with other approaches and experimental data, we
compile in Table 4 the obtained values of the (scaled) pion
electromagnetic (LO and NLO) and photon to pion (LO)

form factors at different momentum transfers Q2. These
form factors are calculated with a non-factorizing BHL-
type ansatz for the pion wave function (hence including an
effective quark mass in the Gaussian distribution for the
intrinsic transverse momentum) and using a BLM com-
mensurate fixing of the renormalization scale. In the case
of the pion–photon transition form factor, we also show
the result setting the constituent quark mass equal to zero
and employing a non-commensurate renormalization scale
– in analogy to our previous analysis in [22]. In all cases,
the asymptotic form of the pion distribution amplitude is
assumed.

7 Summary and conclusions

Let us summarize the hallmarks of the presented method-
ology. We have developed in detail a theoretical framework
which self-consistently incorporates effects resulting from
a modification of the strong running coupling by a non-
perturbative minimum power correction [4] which provides
IR universality. Though a deep physical understanding of
such contributions is still lacking, we have given, as a mat-
ter of practice, quantitative evidence that using such an
analytic running coupling it is possible to get an IR en-
hanced hard contribution to the electromagnetic form fac-
tor Fπ(Q2) by employing only asymptotic (-like) forms
of the pion distribution amplitude; hence we work with-
out recourse to end-point concentrated distribution am-
plitudes.

The presented IR finite factorization and renormaliza-
tion scheme makes it possible to take into account trans-
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verse degrees of freedom both in the pion wave function
[30] as well as in the form of Sudakov damping factors [29],
without entailing suppression of the (pion) form-factor
magnitude resulting from severe IR regularization. In ad-
dition, use of this modified form of αs(Q2) renders the the-
oretical predictions insensitive to its variation with Q2 at
small momentum values, thus remarkably improving their
scaling behavior, in accordance with the nominal scaling
of the leading-twist contribution. Similarly, the satura-
tion behavior of the pion form factor (versus the impact
separation) is significantly improved and the scaled hard
form factor reaches much faster a plateau, accumulating
its magnitude in the region of small transverse distances
where use of perturbation theory is legal. An appropriate
choice of the factorization (scheme) scales and the strict
separation between gluonic contributions from fixed-order
and re-summed perturbation theory helps avoid double
counting of higher-order corrections, enforcing this way
the self-consistency of the whole perturbative treatment
in a wide range of momentum transfer. Moreover, adopt-
ing the BLM commensurate procedure in order to choose
an optimized renormalization scale, and thus minimize
the renormalization-scheme dependence, we have calcu-
lated the pion form factor including the NLO radiative
correction to the hard-scattering amplitude. In contrast
to other approaches, we employ a BHL-type of ansatz for
the distribution of the intrinsic transverse momentum in
the pion wave function which includes a mass term. This
term, resulting from the non-perturbative QCD vacuum
structure, ensures suppression of Ψ soft

π (x,k⊥) for k⊥ = 0
and k3 → −∞, and yields to a stronger fall-off of the
soft, non-factorizing contribution to the form factor at
momentum-transfer values around 20GeV2 and beyond.
Hence, the leading-twist predictions of QCD are remark-
ably confirmed at still higher Q2, whereas at lower mo-
mentum values Feynman-type contributions dominate. In
this region other higher-twist contributions may also be
important.

The same procedure applied, without any scheme pa-
rameter re-tuning, to Fπ0γ∗γ yields a prediction which is
consistent with, though somehow below, the experimental
data of the CLEO and CELLO collaborations, and allows
therefore for a mild broadening of the (true) pion wave
function, as indicated by instanton-based approaches.

We believe that the insight gained through our anal-
ysis gives a strong argument that a power correction in
the running coupling of QCD, as proposed by Shirkov
and Solovtsov, has important consequences and provides
a convenient tool to improve theoretical predictions based
on perturbation theory.
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